The Product of Four Hadamard Matrices
نویسندگان
چکیده
We prove that if there exist Hadamard matrices of order 4m, 4n, 4p, 4q then there exists an Hadamard matrix of order 16mnpq. This improves and extends the known result of Agayan that there exists an Hadamard matrix of order 8mn if there exist Hadamard matrices of order 4m and 4n.
منابع مشابه
Weak log-majorization inequalities of singular values between normal matrices and their absolute values
This paper presents two main results that the singular values of the Hadamard product of normal matrices $A_i$ are weakly log-majorized by the singular values of the Hadamard product of $|A_{i}|$ and the singular values of the sum of normal matrices $A_i$ are weakly log-majorized by the singular values of the sum of $|A_{i}|$. Some applications to these inequalities are also given. In addi...
متن کاملA product for twelve Hadamard matrices
In 1867, Syvlester noted that the Kronecker product of two Hadamard matrices is an Hadamard matrix. This gave a way to obtain an Hadamard matrix of exponent four from two of exponent two. Early last decade, Agayan and Sarukhanyan found a way to combine two Hadamard matrices of exponent two to obtain one of exponent three, and just last year Craigen, Seberry and Zhang discovered how to combine f...
متن کاملProduct of Four Hadamard Matrices
We prove that if there exist Hadamard matrices of order 4m, 4n, 4p, and 4q then there exists an Hadamard matrix of order 16mnpq. This improves and extends the known result of Agayan that there exists a Hadamard matrix of order 8mn if there exist Hadamard matrices of order 4m and 4n. Disciplines Physical Sciences and Mathematics Publication Details R. Craigen, Jennifer Seberry and Xian-Mo Zhang,...
متن کاملOn the Hadamard Product of the Golden Matrices
In this paper we did a generalization of Hadamard product of Fibonacci Q matrix and Fibonacci Q−n matrix for continuous domain. We obtained Hadamard product of the golden matrices in the terms of the symmetrical hyperbolic Fibonacci functions and investigated some properties of Hadamard product of the golden matrices. Mathematics Subject Classification: Primary 11B25, 11B37, 11B39, Secondary 11C20
متن کاملOn the Hadamard product of inverse M-matrices
We investigate the Hadamard product of inverse M-matrices and present two classes of inverse M-matrices that are closed under the Hadamard multiplication. In the end, we give some inequalities on the Fan product of M-matrices and Schur complements. © 2000 Elsevier Science Inc. All rights reserved. AMS classification: 15A09; 15A42
متن کامل